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Abstract. This paper presents two main results. The first result indicates that in materials with broadly
distributed microscopic heterogeneities, the fracture strength distribution corresponding to the peak load
of the material response does not follow the commonly used Weibull and (modified) Gumbel distributions.
Instead, a lognormal distribution describes more adequately the fracture strengths corresponding to the
peak load of the response. Lognormal distribution arises naturally as a consequence of multiplicative
nature of large number of random distributions representing the stress scale factors necessary to break the
subsequent “primary” bond (by definition, an increase in applied stress is required to break a “primary”
bond) leading up to the peak load. Numerical simulations based on two-dimensional triangular and diamond
lattice topologies with increasing system sizes substantiate that a lognormal distribution represents an
excellent fit for the fracture strength distribution at the peak load. The second significant result of the
present study is that, in materials with broadly distributed microscopic heterogeneities, the mean fracture

strength of the lattice system behaves as µf =
µ�f

(LogL)ψ
+ c

L
, and scales as µf ≈ 1

(LogL)ψ
as the lattice

system size, L, approaches infinity.

PACS. 62.20.Mk Fatigue, brittleness, fracture, and cracks – 46.50.+a Fracture mechanics, fatigue and
cracks

1 Introduction

It is well known that fracture properties and breakdown
behavior are very sensitive to the microstructural details
of the material [1]. In ductile materials, grain bound-
aries and second-phase particles form the important mi-
crostructural details for fracture and damage evolution.
In quasi-brittle materials such as ceramics, the fracture
properties are usually dominated by the size and spatial
distribution of microcracks, which are often the artifacts
of material processing techniques. The fracture strength
distribution of a quasi-brittle material is significantly in-
fluenced by the distribution of microcracks. Probabilistic
life design methodologies, “useful” service life predictive
models, and failure risk analysis of a structural material
component utilize fracture strength distributions in assess-
ing the safety and reliability of the material component.

Traditionally, Weibull and (modified) Gumbel dis-
tributions based on “weakest-link” approach have been
widely used to describe the strength of brittle materials.
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These distributions naturally arise from the extreme-value
statistics if one assumes the following conditions for the
distribution of defect cluster sizes in a randomly diluted
network [2]: (1) defect clusters are independent of each
other, i.e., they do not interact with one another; (2) sys-
tem failure is governed by the “weakest-link” hypothesis,
and (3) there exists a critical defect cluster size below
which the system does not fail, and it is possible to re-
late the critical size of a defect cluster to the material
strength. Moreover, if the defect cluster size distribution is
described by a power-law, then the fracture strength obeys
Weibull distribution, whereas an exponential defect clus-
ter size distribution leads to the Gumbel distribution for
fracture strengths. However, in heterogeneous materials
with broad distribution of disorder, Weibull and Gumbel
distributions may not adequately represent the fracture
strengths corresponding to the peak load response. There
are two main reasons behind this inadequacy.

First, in the “weakest-link” hypothesis, the fracture
strength of a randomly diluted lattice system is deter-
mined by the presence of few critical defect clusters, and
is defined as the stress required for breaking the very first
“weakest-link” in the system. In materials with broad dis-
order, the breaking of the very first bond (“weakest-link”)
does not usually lead to the entire system failure, and
hence the fracture strength distribution based on the very
first bond failure may not be applicable. In addition, the
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evolution of initial distribution of defect clusters, i.e., sub-
sequent bond failure is controlled not only by “weakest”
bonds with smallest thresholds but also by the stress con-
centration and shielding effects around the defect clusters.
Consequently, at the peak load, the defect cluster size dis-
tribution that evolved under the applied stress field may
be quite different from the initial defect cluster size distri-
bution. Thus, unless the defect cluster size distributions
at the peak load and at the very first bond failure have the
same form, it is highly unlikely that the fracture strength
distributions corresponding to the peak load and the first
bond failure would follow the same distribution.

Secondly, if the defect cluster size distribution at the
peak load exhibits multi-modal behavior then the corre-
sponding fracture strength distribution is not adequately
described by unimodal distributions such as Weibull and
Gumbel distributions. In the presence of experimentally
observed multiple defect populations, the tail cannot be
fitted by a power law with a single power law exponent
due to the superposition of different defect cluster size
distributions. These multi-modal defect cluster size popu-
lations result in multi-modal strength distributions [2–6].
Experimentally, bimodal Weibull strength distributions
were observed in various brittle materials including car-
bon [7] and silicon carbide fibers [6], and for certain ce-
ramics [8]. The effect of multiple flaw (defect) populations
on fracture strength distribution is also examined experi-
mentally in certain ceramic materials [9–12]. In general at
the peak load, the broken bond cluster distribution follows
generalized Gamma-distribution and in this case, neither
the Weibull nor the Gumbel distributions fit the fracture
strength distribution accurately [2,6,13].

This paper presents two main results. The first re-
sult indicates that, in the case of materials with broadly
distributed heterogeneities, a lognormal distribution rep-
resents the fracture strength of the macroscopic sys-
tem more adequately than the conventional (modified)
Gumbel and Weibull distributions. The second result in-
dicates that the mean fracture strength decreases with
increasing lattice system size, L, and scales as 1

(LogL)ψ
in

the thermodynamic limit.
The paper is organized as follows. Section 2, presents

the theoretical derivation for the fracture strength distri-
bution of a lattice system. In Section 3, numerical sim-
ulations using two-dimensional triangular and diamond
(square lattice inclined at 45 degrees between the bus bars)
lattice networks are presented. Section 4 presents the val-
idation results and a comparison study between the log-
normal distribution for fracture strengths derived in this
study versus the traditionally used Weibull and Gumbel
distributions.

2 Fracture strength of a discrete lattice
system

Progressive damage evolution leading to failure of disor-
dered quasi-brittle materials has been studied extensively
using various types of discrete lattice models [14–17]. Elec-

trical fuse/breakdown models [18–23], central-force mod-
els [24–30], bond-bending models [31,32], and beam-type
models [15,33] have been used in combination with disor-
der either in the elastic constants, threshold values or in
the random dilution of the bonds to model damage evolu-
tion in brittle materials. The reader is referred to [14–17]
and the references therein for a comprehensive review
of modeling quasi-static progressive damage evolution in
brittle materials using discrete lattice networks. Although
discrete lattice models do not describe the specific behav-
ior of any real material, they incorporate the essential in-
gredients of a breakdown process, namely, the initial mate-
rial disorder and the redistribution of forces due to damage
evolution. In this respect, any realistic progressive dam-
age evolution model that describes the behavior of real
materials should be capable of reproducing the behavior
of these idealized discrete lattice models [34].

The essential features of discrete lattice models are
disorder, elastic response characteristics, and a breaking
rule for each of the bonds in the lattice. The elastic and
breaking response characteristics of each bond in the lat-
tice correspond to the mesoscopic response of the mate-
rial. The elastic response of the individual bonds is typ-
ically described by electrical fuse models, central-force
(spring) models, bond-bending spring models, and beam-
type models. The quenched disorder in the system is in-
troduced either in the elastic constants, in the threshold
values, or by the random dilution of bonds. The break-
ing of a bond occurs irreversibly when the applied ac-
tion (stress or displacement) across the bond exceeds the
breaking threshold. Various types of breaking rules have
been adopted in the literature depending on the elastic re-
sponse characteristics of individual bonds. When an exter-
nal action (displacement or force) on the lattice is slowly
increased, the individual bonds in the lattice will break ir-
reversibly one after another until the system falls apart. It
is supposed that successive fuse failures leading ultimately
to the failure of lattice system is similar to the breakdown
of quasi-brittle materials.

In this study, we consider a discrete lattice system in
which all the bonds are intact at the beginning of the
analysis and the damage is accumulated progressively by
breaking one bond at a time until the entire lattice sys-
tem falls apart. This approach is in contrast with the ear-
lier works, wherein either randomly diluted lattice systems
close to the percolation threshold were considered or the
stress required to break the very first bond was defined
as the fracture strength of the lattice system. By using ei-
ther of these methodologies, it is possible to analysize very
large lattice systems of size 1000× 1000. However, the de-
fect cluster distribution obtained by randomly diluting the
bonds of a lattice systems is quite different from that ob-
tained by sequentially breaking one bond at a time. This
is because, the evolution of initial distribution of defect
clusters is controlled not only by “weakest” bonds with
smallest thresholds but also by the stress concentration
effects around the defect clusters. In this paper, we define
the fracture strength of a lattice system as the stress cor-
responding to the peak load of the lattice system response.



P.K.V.V. Nukala and S. Simunovic: Scaling of fracture strength in disordered quasi-brittle materials 93

Consider a lattice system with a total number of bonds,
Nel, subjected to a stress controlled loading. Let N =
{1, 2, 3, · · · , Nel} denote the set of individual bonds in the
lattice system. After breaking k number of bonds, let Sbk
denote the set of all the k number of bonds that were
broken. A broken bond is considered a “primary” bond
if an increase in the applied stress is necessary to break
that bond. Similarly, let Sak denote the set of bonds that
will be broken (“avalanche” bonds) without any further
increase in the externally applied stress, given the set of
broken bonds Sbk at an applied stress σ. Figure 1 illustrates
this concept using a typical lattice system response. Once
a “primary” bond is broken, subsequent breaking of the
“avalanche” bonds continues until we encounter another
“primary” bond, i.e., until it is required to increase the
applied stress level to break a bond. If we do not encounter
a “primary” bond, it means that we reached the peak
load of the lattice system. The dimension of the set Sak
represents the avalanche size, and is given by ak. Let Suk
denote the set of unbroken bonds remaining in the lattice
system after k number of bonds and the elements of the
avalanche set Sak have already been broken. It should be
noted that the set Suk also includes the set of bonds Du

k
called the dangling or dead ends that do not carry any
stress even though they are not broken. The sets Sbk, Sak
and Suk are mutually disjoint and collectively exhaustive
such that

N = Sbk ⊕ Sak ⊕ Suk
Sbk ∩ Sak = ∅

Sak ∩ Suk = ∅

Sbk ∩ Suk = ∅


 (1)

where ∅ denotes the null set, and ⊕ denotes the addi-
tive sum of disjoint sets. Assume that for each non-empty
set Sbk, a set of non-negative stress concentration constants
Lk = {λi(Sbk ⊕ Sak ), i ∈ Suk } are defined. These constants
represent the stress concentration coefficients for all the
elements of the set of unbroken bonds Suk when all the
elements of the sets Sbk and Sak are removed from the
lattice system. Denote the stress concentration coefficient
λi(Sbk⊕Sak ) to be equal to zero for all the bonds {i ∈ Du

k}.
These stress concentration coefficients Lk implicitly define
the redistribution of stress within the lattice system after
all the elements in the set Sbk ⊕ Sak have been removed.

Let Mk denote the set of non-negative constants such
that Mk = {µi = 1/λi: i ∈ (Suk − Du

k )}. Also, let X th
k =

{xi = µiσ
th
i : µi ∈ Mk, σ

th
i ∼ P th

0 (σ) and i ∈ (Suk − Du
k )}

denote the set of modified breaking thresholds (similar to
annealed disorder) for all the bonds in the set (Suk −Du

k )
after the bonds in the set Sbk⊕Sak have been broken. In the
above description, P th

0 (σ) denotes the cumulative proba-
bility distribution of the breaking thresholds at 0th state,
i.e., before any of the bonds in the lattice system are bro-
ken. However, as the bonds are broken successively, the
distribution of breaking thresholds P th

k (σ) of the set of
elements X th

k changes gradually from its initial distribu-
tion P th

0 (σ) of the elements in N .
The conditional probability that a bond from the

set Suk breaks given that the bonds in the set Sbk ⊕ Sak

Fig. 1. A typical lattice system response indicating “primary”
and “avalanche” broken bonds.

have been broken, i.e., for breaking the (k + ak + 1)th
bond in the lattice system given that (k + ak) have been
broken already, is given by

f(k+ak+1) = P th
k

(
σmin(k+ak+1)

)
(2)

where f(k+ak+1) denotes the conditional probability of
breaking the (k + ak + 1)th bond, and σmin(k+ak+1) =
inf(X th

k ). Note that σmin(k+ak+1) denotes the minimum ex-
ternally applied stress that is necessary to break the
(k+ak+1)th bond. The conditional probabilities for break-
ing any of the bonds within the set Sak , given that all the
bonds in the set Sbk are broken is equal to one, i.e., all the
bonds in the set Sak break without any further increase in
stress after breaking the kth bond. Hence,

f(k+j) = 1 ∀ j = {1, 2, · · · , ak}. (3)

Thus, the probability of breaking the (k + ak+1) bond in
the lattice system is

F(k+ak+1) = f(k+ak+1) F(k+ak)

= f(k+ak+1) f(k+ak) f(k+ak−1) · · · f(k+1) F(k)

= f(k+ak+1) F(k). (4)

Let B denote an ordered set of indices, where each index
refers to the sequential number of the broken bond for
which an increase in the applied stress is required to break
the bond. Then, this set contains the indices such as k and
(k + ak + 1) as its elements, and is written in a general
way as

B={bj+1=(bj+aj +1) : b0 =0; a0 =0; j ∈ {0, 1, 2, · · · }}.
(5)

In equation (5), aj refers to the avalanche size after break-
ing the bj indexed bond. It should be noted that the set
B maps the sequential number of the “primary” broken
bond to the sequential number of the broken bond. That
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is, bj = B(j), where j = {1, 2, 3, · · · } refers to the sequen-
tial number of the “primary” broken bond and bj refers to
the sequential number of the broken bond. With this no-
tation in hand, equation (4) can be written recursively as

F(k+ak+1) =
∏
j∈B

f(j). (6)

Similarly, let A denote an ordered set of externally ap-
plied stress values that are required to break the “pri-
mary” bonds, i.e.,

A =
{
σminj : j ∈ B} . (7)

Now, consider the set of scale factors, G, defined as

G =

{
gbj =

σminbj

σminbj−1

: bj = B(j);

bj−1 = B(j − 1); g1 = 1; j = {2, 3, · · · }
}

. (8)

Since the elements of the set A depend not only on
the initial distribution of breaking thresholds but also
on the stress concentration factors around the broken
bond clusters, these stress levels, σminj , at which the “pri-
mary” bonds break can be considered as independently
distributed random variables. Consequently, the elements
of the set G are also independently distributed random
variables. Using equations (7) and (8), the stress required
to break the (k + ak + 1)th bond, σmin(k+ak+1), can be ex-
pressed as a product of independently distributed random
scale factors, i.e.,

σmin(k+ak+1) =


∏
j∈B

gj


 σmin1 (9)

where σmin1 is the stress required to break the first bond.
In lattice systems with broadly distributed breaking

thresholds, the cumulative avalanche sizes in the regime
up to the peak load of the material response are neg-
ligible compared with the total number of bonds bro-
ken up to the peak load. Consequently, the dimension
(cardinality) of the set G with independently distributed
scale factors gj , j ∈ B, is approximately O(np), where
np ≈ O(L1.8) is the number of broken bonds up to the
peak load. By virtue of the central limit theorem, which
states that the product of a large number of independent
factors, none of which dominates the product, will tend
to the lognormal distribution regardless of the distribu-
tions of the individual factors involved in the product, we
have, Prob[σmin(k+ak+1) ≤ σ] ∼ LN as dim(B) → ∞, where
LN denotes lognormal distribution. Hence, as the num-
ber of “primary” broken bonds at the peak load increases
with increasing system sizes, the fracture strength distri-
bution for larger lattice systems tends to be lognormal
distribution.

Remark 1: In the case of narrowly distributed breaking
thresholds, breaking of a bond significantly influences the

subsequent bond breaking process, and the lattice system
reaches its peak load soon after breaking fewer “primary”
bonds. In particular, in the weakest-link hypothesis, the
fracture strength of the system is identified with the break-
ing of the first bond, and hence the fracture strength dis-
tribution is based on extreme-value theory. Qualitatively,
the assumption of broadly distributed breaking thresholds
is supposed to distinguish the scenario of large number of
“primary” broken bonds from the case of fewer “primary”
broken bonds before the system reaches peak load. It is
in this sense that we use the notion of broadly distributed
heterogeneities.

3 Numerical simulations

In this study, we pursue an electrical equivalence to the
mechanical problem [34–36]. We assume equivalence be-
tween electrical current, voltage, and conductance in the
electrical system and the mechanical stress, strain, and
Young’s modulus in the mechanical system, respectively.
Similarly, we also assume an equivalence in the breakdown
process, that is, equivalence between successive burning
of fuses leading to the loss of electrical network conduc-
tivity and the mechanical breaking of bonds leading to
lattice system failure. The main advantage of modeling
a mechanical problem using an electrical analogy is that
the number of degrees of freedom in the system is signif-
icantly reduced, thereby increasing the system size that
can be simulated using the same computational power.

Consider a two-dimensional lattice of size L × L. The
model adopted in this work is similar to the model III
(random threshold) presented in reference [25], however,
as mentioned in Section 2, we start with a fully intact lat-
tice system and break one bond at a time until the lattice
system falls apart. In this work, numerical simulations are
performed on triangular and diamond lattice topologies
with periodic boundary conditions in the horizontal di-
rection. The elastic response of each bond in the lattice is
linear up to an assigned threshold value at which brittle
failure of the bond occurs. The disorder in the system is
introduced by assigning random maximum threshold cur-
rent values, ic, (which is equivalent to the breaking stress
in mechanical problem) to each of the fuses (bonds) in the
lattice, based on an assumed probability distribution. The
electrical conductance (stiffness in the mechanical prob-
lem) is assumed to be the same and equal to unity for all
the bonds in the lattice. This is justified since the con-
ductance (or stiffness) of a heterogeneous solid converges
rapidly to its scale independent continuum value. The
probability distribution of failure thresholds is dependent
on the particular type of material considered. However,
since our focus here is not on modeling any specific type
of material, but on the generic features of damage evo-
lution in disordered systems, we choose, a uniform prob-
ability distribution, which is constant between 0 and 1.
A broad thresholds distribution represents large disorder
and exhibits diffusive damage (uncorrelated burning of
fuses) leading to progressive damage localization, whereas
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Fig. 2. Snapshots of damage in a typical triangular lattice system of size L = 512. Number of broken bonds at the peak load
and at failure are 83995 and 89100, respectively. (a)-(i) represent the snapshots of damage after breaking nb number of bonds.
(a) nb = 25000; (b) nb = 50000; (c) nb = 75000 (d) nb = 80000; (e) nb = 83995; (peak load); (f) nb = 86000; (g) nb = 87000;
(h) nb = 88000; (i) nb = 89100 (failure).

a very narrow thresholds distribution exhibits brittle fail-
ure in which a single crack propagation causes material
failure.

Periodic boundary conditions are imposed in the hori-
zontal direction to simulate an infinite system and a con-
stant voltage difference (displacement or strain) is ap-
plied between the top and the bottom of lattice system.
The simulation is initiated with a lattice of intact fuses
in which disorder is introduced through random break-
ing thresholds. The voltage V across the lattice system
is increased until a fuse (bond breaking) burns out. The
burning of a fuse occurs whenever the electrical current
(stress) in the fuse (bond) exceeds the breaking threshold
current (stress) value of the fuse. The current is redis-
tributed instantaneously after a fuse is burnt. The voltage
is then gradually increased until a second fuse is burnt,
and the process is repeated.

The above choice of redistributing the current after
breaking a fuse assumes that the current relaxation in the
lattice system is much faster than the breaking of a fuse.
Thus, each time a fuse is burnt, it is necessary to calculate
the current redistribution in each of the fuses in the lattice.
This is very time consuming, especially with increasing
lattice system size. The authors have developed a multiple-
rank Cholesky updating algorithm for modeling relax-
ation processes in disordered systems [37]. In comparison
with the most sophisticated Fourier accelerated iterative
schemes used for modeling lattice breakdown [38,39], this
algorithm significantly reduced the computational time re-
quired for solving large lattice systems. Figure 2 presents
the snapshots of damage evolution for the case of a uni-
formly distributed random thresholds model problem in a
triangular lattice system of size L = 512. Based on these
snapshots (Figs. 2a–e), it is clear that the bond breaking
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Table 1. Peak load.

L Nconfig Triangular Diamond

Mean Std Mean Std

4 50000 2.087 0.4328 1.710 0.4248

8 50000 3.148 0.4545 2.338 0.4209

16 50000 5.261 0.518 3.650 0.4485

24 50000 7.336 0.5822 4.953 0.4865

32 50000 9.377 0.6434 6.244 0.5219

64 50000 17.372 0.8595 11.301 0.6611

128 12000 32.82 1.2952 21.09 0.9045

256 1200 62.79 2.0251 40.06 1.380

512 200 120.49 (121.13�) 3.5789

� estimated value based on the equation given in the inset of
Figure 11.

occurs more or less randomly until very close to the peak
load. Since the response of the lattice system based on the
above numerical algorithm corresponds to a specific real-
ization of random bond breaking thresholds, an ensemble
averaging of the numerical results is necessary to obtain
a realistic representation of the lattice system response.
Table 1 presents the number of configurations, Nconfig,
over which statistical averaging is performed for different
lattice sizes.

4 Results and discussion

4.1 Distribution of fracture strengths

Conventionally, Weibull and Gumbel distributions are
used to fit the fracture strength data for brittle materi-
als [4,8]. However, as Weibull mentioned in his pioneering
paper, the Weibull distribution should be considered as
an empirical one on an equal footing with other type of
distributions [8,40]. In material science applications, log-
normal, power law, Gamma, Type-I extreme value, and
bimodal distributions are also often used for describing
the fracture strength distribution [2,5,6,8,9].

In randomly diluted disordered elastic networks, a
Gumbel distribution better fits the fracture strengths dis-
tribution far away from the percolation threshold and a
Weibull distribution provides a better fit close to the per-
colation threshold. These ideas are generally based on the
functional form of probability density of the defect clus-
ters that are obtained from broken bond cluster statis-
tics [16–20]. In these randomly diluted disorder problems,
the defect cluster size distribution is exponential far away
from the percolation threshold and follows a power law
close to the percolation threshold. An exponential defect
clusters distribution leads to Gumbel distribution for frac-
ture strengths and a power-law distribution of defect clus-
ters leads to Weibull form for fracture strengths.

Duxbury et al. [18] studied the distribution of frac-
ture thresholds in the disordered media with randomly
diluted bonds. Subsequently, this study was applied to
a variety of lattice models with different local behavior
including central-force spring models [13,26], Born mod-
els [41], and bond-bending models [13]. In all these studies,
fracture strength of the lattice system was defined as the
stress required for breaking the very first bond in the sys-
tem. These studies along with the analytical investigations
based on largest crack size [22] concluded that the fracture
threshold decreased with the system size L as a power law
of log(L) and the fracture threshold distribution is best
described by a double exponential (modified Gumbel) dis-
tribution. However, numerical simulations on intact two-
dimensional triangular and diamond lattice topologies for
heterogeneous materials with a broad disorder indicate
that the entire lattice network does not fall apart as soon
as the first bond is broken. In fact, the number of broken
bonds at the peak load scales as a power law. This sug-
gests that the arguments used for deriving the breaking
strengths of the first bond may not be extended to this
type of problems.

In this study, fracture strength of a lattice system is
defined as the stress corresponding to the peak load of
the lattice system response. A schematic of a typical lat-
tice system response for a given distribution of random
bond breaking thresholds is shown in Figure 1. Each real-
ization of the random bond breaking thresholds results in
a specific fracture strength value. The distribution of these
fracture strengths sampled over an ensemble of configura-
tions is the subject of interest in this section. In the fol-
lowing, we investigate the validity of Weibull and Gumbel
distributions to represent the fracture strength data cor-
responding to the peak load of the lattice response.

The Gumbel distribution for fracture strengths σf is
given by

PG(σf ) = 1 − exp

(
−cLd exp

(
− k

σδf

))
(10)

and the Weibull distribution is

PW (σf ) = 1 − exp
(−cLdσmf

)
(11)

where k, δ, c and m are constants, and d denotes the
lattice dimension. The validity of Gumbel and Weibull
distributions to the fracture strength data can be tested
by rewriting equations (10) and (11) as

A = k

(
1
σδf

)
− ln c (12)

for the Gumbel distribution and

A = m ln
(

1
σf

)
− ln c (13)

for the Weibull distribution. In equations (12) and (13),
the variable A is defined as

A = −ln
[
− ln (1 − P (σf ))

Ld

]
(14)
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(a)

(b)

Fig. 3. Probability distribution fits for fracture strengths at
the peak load response in a triangular lattice for different lat-
tice system sizes L = {4, 8, 16, 24, 32, 64, 128, 256, 512}. (a)
Gumbel distribution (b) Weibull distribution.

where P (σf ) is PG(σf ) in the case of Gumbel distribution,
and PW (σf ) for Weibull distribution. Figure 3a presents
Gumbel fit for the fracture strength distribution for trian-
gular lattice network using equation (12). Similarly, Fig-
ure 3b presents the Weibull distribution fit (Eq. (13)) for
the fracture strengths obtained using simulations on tri-
angular lattices. From these figures, it is clear that frac-
ture strength data obtained for two different lattice sizes
does not align onto a single straight line as it should, if
the data were to follow equation (12) or (13). The frac-
ture strength results based on diamond lattice network

exhibit similar trends indicating that in the case of highly
disordered materials, neither Gumbel nor Weibull distri-
butions may represent the fracture strengths distribution
accurately.

The first main result of this study is that for mate-
rials with broadly distributed heterogeneities, a lognor-
mal distribution represents the fracture strength of the
macroscopic system more adequately than previously used
(modified) Gumbel and Weibull distributions. Lognormal
distribution has been used in engineering practice to rep-
resent the fracture strengths of materials [42,43]. The log-
normal distribution can be understood to have evolved
as a consequence of multiplicative nature of large num-
ber of random distributions representing the individual
scale factors necessary to break the subsequent “primary”
bonds leading up to the peak load. The precise charac-
ter of the individual distributions that are multiplied to
give the final distribution is irrelevant as long as the num-
ber of “primary” broken bonds up to the peak load is
large. Figures 4a and 4b present the cumulative fracture
strength versus the standard lognormal variable, ξ, defined
as ξ = Ln(σf )−η

ζ , for triangular and diamond lattice net-
works respectively. In the above description, η and ζ refer
to the mean and the standard deviation of the logarithm
of σf . These figures indicate that the fracture strength dis-
tribution collapses onto a single curve for different lattice
system sizes, which is an improvement compared to (mod-
ified) Gumbel and Weibull distributions. A better repre-
sentation to test the lognormal description for fracture
strengths is to plot the inverse of the cumulative proba-
bility, Φ−1(P (σf )), against the standard lognormal vari-
able, ξ. In the above description, Φ(·) denotes the standard
normal probability function. Figures 4c and 4d present the
lognormal fit for the cumulative fracture strength distri-
butions obtained for triangular and diamond lattice net-
works respectively. From these figures, it is clear that the
fracture strength distribution obtained for different lattice
system sizes collapses onto a single curve, albeit minute
deviation from straight line behavior is evident. We have
also used the normal distribution to collapse the fracture
strength data of triangular and diamond lattice systems.
Although the data collapse is reasonable, it is not as good
as that of lognormal distribution.

4.2 Mean fracture strength

The second main result of this study is concerned with
the scaling law for the mean fracture strength of the lat-
tice system. Table 1 presents the mean fracture strength
data for various triangular and diamond lattice system
sizes. Cumulative fracture strength distributions may be
used to derive the scaling form of mean fracture strength.
For example, when the Weibull distribution represents the
fracture strengths, the mean fracture strength, µf , scales
as a power law, i.e.,

µf ∼ L− d
m . (15)



98 The European Physical Journal B

(a) (b)

(c)

 

(d)

Fig. 4. Lognormal distribution fit for fracture strengths at the peak load response (a) triangular lattice (b) diamond lattice.
Reparametrized lognormal distributions: (c) triangular lattice (d) diamond lattice. For triangular systems, L = {4, 8, 16, 24,
32, 64, 128, 256, 512}, and for diamond lattices, L = {4, 8, 16, 24, 32, 64, 128, 256}.

Similarly, in the case of fracture strengths represented by
Gumbel distribution, we have

µδf =
k

(ln c − a1) + d ln L

=
1

A1 + B1 ln L
=

1
ln (A2 LB1)

(16)

where a1, A1, B1, and A2 = exp(A1) are constants that
are related to the parameters k and c of the Gumbel
distribution. Equation (16) is same as the relation pro-
posed by [20,26] that shows the effect of sample size L on
average breaking voltage or failure strength. Figures 5a
and 5b present the mean fracture strength µf versus the
lattice size L based on the form of equations (15) and (16),
respectively, for diamond lattice system. The results for

triangular lattice systems exhibit similar behavior. From
these figures, it is evident that mean fracture strength
does not follow a power-law dependence on the lattice
size L. The results presented in Figure 5b indicate that
equation (16) may be able to represent the mean fracture
strengths reasonably well even though the Gumbel distri-
bution is inadequate to represent the cumulative fracture
strength distribution. The value of the exponent δ is ap-
proximately equal to 2.45 and is consistent with the values
reported in the literature [20,26]. The coefficient B1 (slope
in Fig. 5b) is large (≈20.5) and is, once again, in agree-
ment with the divergence behavior expected as the lattice
system approaches failure [20,26]. This weak (logarithmic)
dependence of mean fracture strength on system size L is
consistent with the analytical and previously reported nu-
merical results on randomly diluted networks [16–20,26].
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(a)

(b)

Fig. 5. Mean fracture strength versus diamond lattice sys-
tem size. (a) Weibull fit based on equation (15). (b) Modified
Gumbel fit based on equation (16).

Alternatively, we have plotted the ensemble averaged
peak load, F̄peak, versus the lattice system size, L, as
shown in Figure 6. From the numerical simulation results
presented in Figure 6, it is clear that the ensemble av-
eraged peak load F̄peak for triangle and diamond lattice
topologies may be expressed as

F̄peak = C0 Lα + C1 (17)

where C0 and C1 are constants. Thus, the mean fracture
strength, µf , defined as µf = F̄peak

L , is given by

µf = C0 Lα−1 +
C1

L
(18)

The results shown in Figure 6 indicate that for both the
triangular and diamond lattice topologies, the exponent α

Fig. 6. Average peak load versus the lattice system size, L.

in equation (17) is approximately equal to 0.96. This, in
turn results in a very small exponent value equal to −0.04
in the first term of the equation (18). A very small negative
value of the exponent (α−1) is equivalent to a logarithmic
correction, i.e., for (1−α) 
 1, Lα−1 ∼ (log(L))−ψ . Thus,
an alternative expression for the mean fracture strength
may be expressed as

µf =
µ�f

(LogL)ψ
+

c

L
(19)

where µ�f and c are constants that are related to the con-
stants C0 and C1 of equation (18). This shows that the
mean fracture strength of the lattice system decreases very
slowly with increasing lattice system size, and scales as
µf ≈ 1

(LogL)ψ
for very large lattice systems.

5 Conclusions

This paper presents a theoretical investigation supple-
mented by numerical simulations to describe the fracture
strength distribution of a lattice system. The discrete lat-
tice system considered is fully intact at the beginning of
the analysis and the damage is accumulated progressively
by breaking one bond at a time until the entire lattice sys-
tem falls apart. The fracture strength of a lattice system
is defined as the stress corresponding to the peak load of
the lattice system response. This is in contrast with the
earlier works, wherein either randomly diluted lattice sys-
tems close to the percolation threshold were considered or
the stress required to break the very first bond was defined
as the fracture strength of the lattice system.

Our study presents two main results. First, for materi-
als with broadly distributed heterogeneities, a lognormal
distribution represents the fracture strength of the macro-
scopic system more adequately than previously used dis-
tributions such as (modified) Gumbel and Weibull. The
lognormal distribution can be understood to have evolved
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as a consequence of multiplicative nature of large number
of random distributions representing the stress scale fac-
tors necessary to break the subsequent “primary” bonds
leading up to the peak load. The precise character of these
individual distributions that are multiplied to give the
fracture strength distribution is irrelevant as long as the
number of “primary” broken bonds up to the peak load is
large. Hence, as a consequence of the central limit theo-
rem, the system fracture strength probability distribution
approaches a lognormal distribution. Numerical simula-
tions based on two-dimensional triangular and diamond
lattice topologies substantiate that a lognormal distribu-
tion represents an excellent fit for the fracture strength
distribution.

Second, the mean fracture strength of the lattice sys-
tem behaves as µf = µ�f

(LogL)ψ
+ c

L , and scales as
µf ≈ 1

(LogL)ψ
as the lattice system size, L, approaches

infinity.
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